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ABSTRACT

- The thermal conductivity of the excitonic insulator™ is calculated in the
semimetallic limit. At low temperatures the main scattering mechanism is as-
sumed to be due to impuritiee. Despite a recent 'm of "superthermal conduc-
tivity" of the system which can be described as s . ondensate of electron-hole

pairs we find that the thermal conductivity is "wel)l behaved.” It is shown that

the thermal conductivity in the semimetallic limit of the underlying two band
model 1s almost identical to the thermal conductivity of a superconductor con-
taining magnetic impurities as scatterers. The analogy stems from the fact
trat the thermodynamic properties in both cases are similar as was discussed

recently.
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I. Imtroduction

In this paper we continue the analysis of transport properties of the
"excitonic insulator" which has been discussed recently in the 1itera.ture1’2.

In the preceding pa.per3 , hereafter referred to as II, we have calculated the
electricel conductivity of the excitonic phase in the semimetallic regioa where
the valence band and the conducticn band of the underlying model overlap. The
main scattering mechanism at low temperatures is assumed to be due to impurities.
In I we have discussed the influence of the impurities on the thermodynamic
description of the excitonic phase. It was shown that the situation could be
described completely within the framework of the Abrikosov-Gorkov theory origi-
nally developed for superconductors containing magnetic impuritiesh.

In this peper we investigate the thermal conductivity of the excitonic
phase vhich can be cescribed as a condensate of bound pairs of electrons and
holes.‘ ‘The main re=ason for this investigation is-that Kozlov and Maksimov have
recently claimed "superthermal conductivity" for such a systems. Such & novel
situa.f;ion certainly would be of major experimental interest. However, we shall
show in the course of this work that the thermal conductivity ol the excitcnic
phase is "well behaved," in fact it is similar to the thermal conductivity of
& superconductor containing paramagnetic impurities as sca.tterers6. The contra-
dictory claim of reference 5 is based on the Landau criterion for superfluidity;
the derivaetian of the criterion for the excitonic phase contalns a serious
mathematical errorT.

To start with we shall first discuss Kubn's formulas for the transport
coefficients. Measuring energies relative to the chemical potential the elec-

tric currentj and the heat current U are defined as folJ.ows8

LY
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T the tempersture and e the electronic

where /.c. is the chemical potentiel,
The thermal conductivity af is obtained

charge; & is the d.c. conductivity,

from (1) by
we=-2VT i J =0 (2)
vhich leads to 2
L

G

{
= == | (3)
The d.c. conductivity @ has been calculated in the preceding paper whereas the

transport coeificients L and L,vare given by8 (we anticipate spherical sym-

metry)
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Here u a.nda are the Heisenberg operators for the energy and electric currents,

b o
respectively. The brackets indicate a thermsal as well as an average over im-

purities as discussed in I and II.
The two band model we shall use has been discussed in detail in I and

the preceding paper (II). The single particle energies in the two bands are

assumed to be given near the Fermi surface by (see eq. (I1,2)
2
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vhere for mathematical convenience we assume equal band masses. We shall see
lster on that in the semimetallic limit (large p_ ) the thermoelectric coef-
ficlent L, is smaller by a fgctor KOT _[’;_ as compared to L . asve
shall systematically neglect such terms, wze-“::onfine our attention to the cal-
culation of the coefficient L .

Another useful representation of L can be derived from the Kubo form-

ula (h)9. Consider the causal correlation function

Plr) =5 T Wim) Uim)d (®)

vhere T"t,). are imaginary times with Oé'ﬁl_é p . Fourier transforming ac-
[}
cording tc

[ 0 -;V(T-‘r ) -
LA ? ZWje " y=2WE (g
y : )
ve continue the discrete imeginary frequencies 1Y to the full complex energy
plane. The coefficient is then given by

L= -i- w'm ';!5[7(6*35)‘7(“';3)] = lim -i— Im Pwsid)  (8)

-0 K->0
where § 1s a positive infinitesimal.

However, we have to be careful in using this formula for answering the
queation of "superthermal conductivity." This is because the mixing of "retarded"
and "advanced" response in formula (8) neglects the possibility of an anomalous
behavior of the real part of P(2=w+id) in the limit w0 . Similay
to the problem of infinite conductivity in superconductors, we expect that the
possibility of an undamped heat current which could be accelerated by the tem-
perature gradient would show up in the real part of the retarded correlation

: v
function T(w*léj (thus leading to: gf: w = const, -=_=7-_I ). Instead of
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formula (8) we shall consider the following expression

o L Ted)-C

W=>0 W

(9)

where the constant C will be determined later on by comparison with the cor-
responding expression for the normal state behavior. Formula (9) bears resem-
blance to the familiar expression for the electrical conductivity (asee preced-
ing paper). T(mia) would correspond to the paramagnetic contribution to the
electric current (denoted by K?(mié‘) in II) whereas the constant C would
be equivalent to the diamegnetic contribution (denoted by --KD in II)1°.

In section II we derive a tractable form for T(n‘v) not dwelling on
additive constents which are assumed to be absorbed in the constant C. In
section III we make an ansatz for the constant C based on the required
form in the normal state. We also shall be guided by the corresponding expres-
sion for the diamagnetic contribution in the problem of electrical conductivity.
The resulting expression for the thermal conductivity will turn out to be "well
behaved” as wW=>0 . Thus there is no "superthermal conductivity." 1In section
IV we calculate the final expression in analogy to calculations in the precedin:,

paper. Section V contains explicit evaluations in several iimits.

~
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II. Derivation of the heat current correlation function

The model has been discussed in detail in pepers I «nd II (see section
II of preceding paper). Denoting creation and annihilation operators for a-

+
and b- electrons by a; @p and bp,b p Tespectively we have introduced a
-~ o .

Nembu notation

bP
Y‘ﬂ ( (bp “p , (10)

o.,, ""

The electric current operator has been written as (eq. II,19)
dv) = e% Y(pT) «3’@ Ypt) (1)

A
vwhere the velocity matrix '\Y(P) is explicitly
- [

f‘ ( t) 0

A )
o) = ) TP e e (2
- - 0 :E;.(P) - £ -

Similarly the spatially uniform heat current operator can be defined byll

U.('c) ( 2T ""’)Z. 'vfp'c) '\Tlp) WpT) (13)

- } s Ty
vhere ‘B‘c are imaginary times and ¥ o positive infinitesimal indicating

the ordering of operators. Expression (13) is the appropriate form when deal-
ing with imaginary times in which case the Heisenbers field operators are given
by equation (II.8) of the preceding paper. Introducing (13) into the correla-

tion function (6) we obtain

-6-




Py = -‘-(-?---?-.)(l..-l).

'%(T Fp7)) Do pipr) Fpe) S ppr) | O
- e t: =t‘fx
T, - %21

Actually the time derivatives in this expression should have been included in
the brackets, as they do not commute with the time orderin- operator T. By
taking these derivatives outside we have neglected a term proportional to the
§ - function & ("v’,"C;) . When Fourier transformed this correction term
gives a constant which we assume to have been included in' the constant C in
equation (9). '
The further calculation proceeds in a way similar to the calculation
of the electrical current correlation function in the preceding paper. In-
troducing Gre:ns functions (see I and II) and neglecting vertex corrections

for & moment we get

{2t o,

Pawy =k (&) (&)

2 Trace ’G(P) G(p,'t.*t,')%(r) G(p,'rz-‘g') I (15)
P - e = L3N o= t:‘t"d .

'c’" :tfa
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Fourier tranaforming we obtain

37-

= 2iw-m)y
i) =3 % Br

Z. Tface 'V(p) G(p.m.,) ‘U(p) 6(p,m -iv) € ,(16)

=0
vhere the time derivatives have been written as derivatives with respect to ¥

Comparing this expression with the electrical current correlation function

K?( ;9) (II,21) we see that both are identical except for the prefactor,
the b’ -exponential and ). -derivatives and except that we have left out the
vertex correction for the velocity matrix in (16). The vertex corrected ex-

pression ?l‘v)my be written down immediately from this comparison with (II,21):

aua-w)
= 36" P Z:Tnce. 'ﬂr) 6(p,m.,)w(rlm ' nv)G(P m‘uy)e :’T)
0

where N has been calculated in section III of the preceding paper. We remark
ey

Pliv) =~

that as usual the @ -summation has to be performed firast as the double sum-
metion converges only conditionally. Expression (17) is our final form of the
heat current corralation function. The constant C which according to eque-
tion (9) has to be subtracted from (17) will be considered in the following

section,

III. Determination of the subtraction constant

We shall determine the subtraction constant C in formula (8) by anal-
ogy from the corresponding constant in the electrical conductivity problem,
i.e. the diamagnetic contribution. The latter is given from equation (I1I.18)

of the preceding paper

2
D e 2
-K = 3— §[(Y! E‘(z)) nb(zj + (Y:Er(F)) ha(P) ] ; (18)

where the F.qbane the general band energies, n“(P) the occupation numbers in
L™
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momentum s8pace. We rewrite the occupation numbers in terms of the spectral

runctionsl‘?

oo

SURNEICINE -

vhere f(w) 1s the Fermi distribution function and the spectral functions are

)
expressed through the one-particle Greens functions

S (Po w) = |[ (E,wiS)-G“(f,waiJ)J (20)

Thus we can write for (18)

K = é‘%f Eb‘P) jg— € ff»)S (p,a) + (b-oa) (21)

The product -F(m)S(p,w) can be interpreted as the density of particles with mo-
mer.tum a and ene;;;r W .

It is intuitively clear that in the thermal conductivity problem we
should replace the charge € in expression (21) by the energy w . Therefore

we make the following ansatz for the constant C:
C= "LZ( .(p))j—— wf(w)S(p,n) +(b-a)

o (22)

S 31 2 ”_g_«_a_ € . , ‘
-3 ?d‘§(~££b(£))_~£ 2w G‘“i'l '[G‘(g.“*'b")'G,,(f.“-'q +(b>a)

d=o

vhere in the second line we have explicitly introduced the functions f and S .
The o);-ra.ctor is generated by the J-derivatives, and y 1s a small positive
number which has to be set equal to zero finally as indicated in (22).

The w-integral can bde transformed into a summation over imaginary fre-
quencies iw. + This is done by closing the contour of the integral for the

first integrand in (22) by a large semicircle in the upper half plane and for
-9-
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the second integrand in the lower half plane. Summing over the residues at the

poles of the Fermi function at la;w" =i (2ne)) W p" ve get at once:

C 'é_?a‘ P fa Z (v Eb(p)) G (P.a.‘)e ‘Ia °+(b-m) (23)

where the w-summation has to be performed first as usually. In order to meke

contact with the correlation function expression (17), the right hand side in

(23) 1is further transformed by a partial P- integration over the Brillouin
e,

zone. In analogy to the calculation in the preceding paper (eq. I1I1.22) we get

o ™ X
C=-% Z“”p)'—"G( w)e l +(b>a) (24)
3 36 p (M 4 'b!: bf' n ¥=0 )
vhere 3’“(!:) are the group velocities 33- € “(.f.’ (12). Using the
Greens functions of the preceding paper (I1I,9), we have after taking the deri-

vatives and combining al. terms in snalogy with expression (II, 23):

-
lz '35 p

10, ¥

C =- Z Troce '\Y(P) qu,m..) olp) G(f,m ) 5 (25)

§=0

For better comparison with -P( l'v) (17) we also have substituted J= 2y,
Comparing this expression with expression (17) for the correlation

function -P(o'w) we see that

C = Piv=0) , (26)

because the vertex corrected velocity matrix u in (17) reduces to the free
vertex function ,f: at ¥»=0 (see equations (II,25,26,30) of the preceding
paper). As the statement (2€) is independent of the fact whether the system

is in the normal state or the excitonic state, we can conclude quite generally
that the thermal conductivity is "well behaved." This is because (26) guarantees

that the real part of the numerator in (9) vanishes in the limit w0 . This

-10-




conclusion will be confirmed by the calculations in the next two sections.

IV. Evaluation of the thermal conductivity

Combining the two expressions (17) and (25) we cean follow very closely
the calculations of the corresponding expressions (I1I,21,23) in the preceding
paper. We first perform the momentum integral evaluating the total expression
at the Fermi surface. In analogy to the result (II.33) of the preceding paper
we get

‘ . . > Ty B b (2im-iv)y
pliv) = Kin-C = m % B ,:le“,cm“ W) & 27)

where 'P is the density of electrons or holes, respectively, and the function
F has been defined in equation (II,34). The further calculation differs slightly
from the corresponding calculation in section IV of the preceding paper because
of the presence of the X-exponential in (27). We write the frequency summation
as a contour integral in the complex plane:
C, (Zz-is)g
01 , Vo (hd.‘-m)x e '
-é-z: F(Iwnllh)"‘ly) e = -iL.' oa F(z,z-.p) (28)
YW L ga
e +| /
Co

the path Co being defined in equation (II,35) of the preceding paper. Because

of the ¥ -exponential we have to choose the Fermi function in (28) instead of
the tanh-function in (II,35) in order to insure the vanisning of the integrand
for large z. The integral (28) is further transformed into an integral over the
discontinuities of the function F(z,z-'nv) across its cuts. These cuts are

defined in equation (II,37). The contribution from the first cut C, 1is given

by
o eflﬁ"lv)x -
3, =-+ £ dx oY LF(xvié‘,x»b)-F(x-i&x-iv)j (29)

-1l-




vhere W  1s the gap in the excitation spectrum of the system (11.A10). Simi-

larly the contribution from the cut Ch gives

'av-w

(Zz-w)x
3.' = J pz* ' [F(z 2-ivnd) -Flz,2- »9»:32]
s @iy 2oip-x (30
= 20 i Ax e o LF(xﬂJx -1 ~F(x-19 xﬂyz-]

vwhere we have used (II,38). The contributions from the two cuts C, and C3
can be transformed to integrals over the cut Cl in the same way. Combining

all 4 terms and rearranging we obtain for the right hand side of 27)

P(‘v) = - ——,— 36 f {[F(x-n; x-1y)-F(x-i9, x-m)][tqnhe- cosh(Zx-N)o' -smh(ll'li’)JJ

(31)
*[F(xﬂd" xe1) - (e, xwv][tanhg- cosh(Zxﬂv)bf smh(bvuv)ﬂ} ,

According to formula (9) we have to take the analytical continuation of
this expression from zs;y to sto-is and then pass to the limit wW—»0. This

process leads to the following expression for the transport coefficient [_ 4

L= 70%1 '{6" ﬁ'_:":) '"J dx{F{xﬁJ X~0- né)[ﬂanh&‘- cosh(2x-w)y “‘""(2"“*’)6']
(32)

-F(x-ib;x*w*ié?[tanh% Wh(b"w)()' 'Sinh(sz)a]}'

where we have left out the contributions from F(Xvia‘,x‘w-itf) and F(Aﬁib;xowi.w)
which according to (II.42) vanish in the limit W~ 0 . Furthermore we can
transform X-»Xrw in the first part of the integral and split the intezration
into two terms. The first of these terms is the integral from wo-w to w,

and gives for small W




We
=)
Wo-w

ox F(x+weid,x-if) [’tonh e(—;:—w cosh(xwa)y - ‘;""(7"‘"‘)8]

~ Flwy, WO';s)['thH'EZ& cosh(2wyy) -Sinh(Zw,a')] = O) £

as discussed in equations (II.4h4,iS5) of the preceding paper. The second inte-
gral (w,l_-xcco) can be combined with the second part in (32) leading to

* 7 o
L = "& ;5;_ ;{dx -f-.sechl% F(Kﬂd;)bls) cosh(xy) ,6=° (34)

vwhere we have replaced ?‘8 =Y.

Comparing this expression with equations (II.46,47) of the preceding
paper we see that the d;c. conductivity apart from the fa;:tor e,z may be ob-
tained from (34) by leaving out the U-Gerivative:s. This is explained by the
fact that the heat current (13) differs from the electric current (11) by the
time derivatives which eventually are represented by the x-derivativea in the
correlation function expression (17). 1In the same way it is clear that the
thermoelectric coefficient L, ( 4) 1is given by (34) with one J -derivative only,
as there is only one heat current involved in the correlation function (4) for
LB

" .

Therefore L, obviously vanishes. The reason for this is that we have
evaluated the momentum integral at the Fermi surface in passing from expression
(17) to expression (27). Correction terms would be smaller by a factor Kﬂ/_&;‘_
vhich we have neglected systematicelly. Thus the thermoelectric coefficient 2

L' is zero to a sufficlent accuracy.

The thermal conductivity 98 is therefore given from (3) and (34)

13-




. vtm—

(- -]

x=LE Jax acnx L)
m T @, - Z[Aﬂmm -FJ fZF'("h)‘*’l,,' (35)

vhere we have introduced the.function Jz- F(x14, x-10 ) from equation (II.U8)
of the preceding paper; the different terms and symbols are aiso explained in
section v and the Appendix of the preceding paper. Explicit calculations in

several limits are considered in the final section.

V. Discussion and gglicit calculations

We may compare our final expression (35) with the corresponding formula
for the thermal conductivity of a superconductor containing magnetic impurities
as derived in reference 6 (equation (3.1)) The two expressions are identical if
we replace the total density of particles _9 in the formula of reference 6 by

Z 3 in ocur case which is due to the two types of carriers. The similarity
1s not surprising as we'have seen in reference 2 (paper I) that the excitonic
phase in the presence of impurities has the same ‘thermodynamic properties as a
superconductor with megnetic impurities. Therefore one expects that the reac-
tion to a temperature gradient 1s similar in both systems because the different
charges of the bound pairs are not significant in this case,

The fact that the expression (35) 1s well behaved over the whole tem-
perature range clearly disproves the claim of reference 5 that the excitonic
phase should have "superthermal" properties. It remains to discuss the behavior
of the thermal conductivity in several limits which are accessible to explicit
calculations.

In the normal state (A= O) we obtain from (35) using (II.51) of the
preceding paper

211'7"9"6“ 2
2, = '—3;‘— KBT (36)

-1k




>

el
where 'th = I"'t' is the transport collision time (II,50). Upon com-

parison with the "normal"™ conductivity (II,52) we have the Wiedemann-Franz law

2
Zv ='ﬁ L (31
3 3 »
s, e
Using (36) we write
3 o0
3 Iy
* - i : ox x"sechl-';—’.‘ hx) , (38)
x, ™ & 2[BImVOET-T] +2P(1h) 4T,

In order to evaluate this expression asymptotically near T = O we hé.ve to dis-
tinguish between the two cases whether the excitaticn spectrum of the system
has a gap ( W, * 0) or not. In the first case, i.e. for low impurity con-
centration (o = %. < | , see the precedins paper), we obtain, using the

expressions (II.54) and (II,55) of the preceding paper, respectively

Yy
% 4 |-« ~Puw,
—_ = = w < (39)
%, "z'zﬁt-x% e & ) 120, a=gal
tr,

Thus the thermal conductivity goes to zero exponentially as long as there is a
gap in the excitation spectrum.
In the gapless region (o()l) we get at T = O using (II.58) of the pre-

ceding paper and starting the integration in (38) at w,=0

-2-
= - I r (40)
- — ] oA = -
x, |+'%£L-°(Z ) a>!
ir,

Comparing with (II.59) we see that in the gapless region the ratio u/l is
n
identical to the ratio G/G‘ for the d.c. conductivity. Therefore the Wiede-
n

mann-Franz law holds, too.

-15-




Finally, we consider the transition temperature region where the system

2
is always gapless (u-%, | as A-»o) . Expanding (38) in powers of A
we conclude in analogy to equations (II,62,65) of the preceding paper that

-

= | - const-(I-t) ,t,a—'- < | (42)

x [
o

Fumerical solutions for the superconductor case in the whole temperature range

are reported in reference 6.
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